metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Han-Na Hou

Department of Chemistry, Hubei Institute of Education, Wuhan 430205, People's Republic of China

Correspondence e-mail: houhanna@163.com

Key indicators

Single-crystal X-ray study T = 298 K Mean σ (C–C) = 0.003 Å R factor = 0.032 wR factor = 0.083 Data-to-parameter ratio = 21.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Dichloro{4-chloro-2-[2-(isopropylamino)ethyliminomethyl]phenolato}copper(II)

In the title mononuclear copper(II) complex, $[CuCl_2-(C_{12}H_{17}ClN_2O)]$, the Cu^{II} atom is coordinated by one O atom and one imine N atom of a Schiff base ligand, and by two Cl⁻ anions, forming a slightly distorted tetrahedral geometry. In the crystal structure, molecules are linked through intermolecular hydrogen bonds, forming layers parallel to the *bc* plane.

Comment

Copper(II) complexes derived from Schiff base ligands have been studied extensively due to their interesting structures and wide applications (Bhaduri *et al.*, 2003; Rospendowski & Smith, 1988; Dominguez-Vera *et al.*, 1998; Hebbachi & Benali-Cherif, 2005; Butcher *et al.*, 2003). The present author has recently reported a related copper(II) complex (Hou, 2006) and, in a further investigation of such complexes, the structure of the title mononuclear copper(II) complex, (I), is reported here.

The Cu^{II} atom in (I) is in a slightly disorted tetrahedral geometry and is four-coordinated by one O atom and one imine N atom of a Schiff base ligand, and by two Cl⁻ anions (Fig. 1). The bond lengths (Table 1) involving the Cu^{II} atom are within normal ranges and comparable with the values observed in other similar copper(II) complexes (Shii *et al.*, 1999; Pal *et al.*, 2005; Colacio *et al.*, 1998).

In the crystal structure of (I), the molecules are linked through $N-H\cdots O$, $N-H\cdots Cl$ and $C-H\cdots Cl$ intermolecular hydrogen bonds (Table 2), forming layers parallel to the *bc* plane (Fig. 2).

Experimental

5-Chlorosalicylaldehyde (0.5 mmol, 78.3 mg), *N*-isopropylethane-1,2diamine (0.5 mmol, 51.9 mg), and CuCl₂·2H₂O (0.5 mmol, 85.2 mg) were dissolved in methanol (50 ml). The mixture was stirred at 328 K for 1 h to give a dark-blue solution. After keeping the solution in air for 11 d, blue block-shaped crystals of (I) were formed.

© 2006 International Union of Crystallography All rights reserved Received 15 July 2006 Accepted 18 July 2006

Figure 1

The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

$[CuCl_2(C_{12}H_{17}ClN_2O)]$	Z = 4
$M_r = 375.17$	$D_x = 1.556 \text{ Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 11.887 (1) Å	$\mu = 1.86 \text{ mm}^{-1}$
b = 11.557 (1) Å	T = 298 (2) K
c = 12.531 (1) Å	Block, blue
$\beta = 111.521 \ (1)^{\circ}$	$0.22 \times 0.18 \times 0.13 \text{ mm}$
V = 1601.5 (2) Å ³	

Data collection

Bruker SMART CCD area-detector
diffractometer13689 measured reflections
3800 independent reflections
2981 reflections with $I > 2\sigma(I)$
 $R_{int} = 0.029$
 $\sigma_{max} = 28.5^{\circ}$ $\sigma_{max} = 0.686, T_{max} = 0.794$ $\sigma_{max} = 28.5^{\circ}$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.037P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.032$	+ 0.2985P]
$wR(F^2) = 0.083$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.05	$(\Delta/\sigma)_{\rm max} < 0.001$
3800 reflections	$\Delta \rho_{\rm max} = 0.37 \ {\rm e} \ {\rm A}^{-3}$
174 parameters	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

Cu1-O1	1.944 (2)	Cu1-Cl2	2.220 (1)
Cu1-N1	1.996 (2)	Cu1-Cl3	2.246 (1)
O1-Cu1-N1	97.62 (6)	O1-Cu1-Cl3	109.85 (5)
O1-Cu1-Cl2	108.51 (5)	N1-Cu1-Cl3	111.40 (5)
N1-Cu1-Cl2	110.10 (5)	Cl2-Cu1-Cl3	117.50 (3)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2A\cdotsO1^{i}$	0.90	1.98	2.828 (2)	157
$N2-H2B\cdots Cl2^{i}$	0.90	2.47	3.2532 (19)	145
$C7-H7\cdots Cl3^{i}$	0.93	2.77	3.619 (2)	153
C9−H9A···Cl3 ⁱⁱ	0.97	2.80	3.662 (2)	149

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) x, $-y + \frac{3}{2}$, $z - \frac{1}{2}$.

The crystal packing of (I), viewed along the b axis. Hydrogen bonds are indicated as dashed lines. Only H atoms involved in the hydrogen bonds have been included.

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C-H = 0.93–0.98 Å and N-H = 0.90 Å, and with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C,N)$.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

The author acknowledges Hubei Institute of Education for funding this work.

References

- Bhaduri, S., Tasiopoulos, A. J., Bolcar, M. A., Abbound, K. A., Streib, W. E. & Christou, G. (2003). *Inorg. Chem.* 42, 1483–1492.
- Bruker (1998). SMART (Version 5.628) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
- Butcher, R. J., Mockler, G. M. & McKern, O. (2003). Acta Cryst. E59, m1104m1106.

Colacio, E., Dominguez-Vera, J. M., Ghazi, M., Kivekäs, R., Klinga, M. & Moreno, J. M. (1998). *Inorg. Chem.* 37, 3040–3045.

Dominguez-Vera, J. M., Camara, F., Moreno, J. M., Colacio, E. & Stoeckli-Evans, H. (1998). *Inorg. Chem.* 37, 3046–3050.

Hebbachi, R. & Benali-Cherif, N. (2005). Acta Cryst. E61, m1188-m1190.

Hou, H.-N. (2006). Acta Cryst. E62, m1533-m1534.

- Pal, S., Barik, A. K., Gupta, S., Hazra, A., Kar, S. K., Peng, S.-M., Lee, G.-H., Butcher, R. J., El Fallah, M. S. & Ribas, J. (2005). *Inorg. Chem.* 44, 3880– 3889.
- Rospendowski, B. & Smith, W. E. (1988). Inorg. Chem. 27, 4509-4511.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Shii, Y., Motoda, Y., Matsuo, T., Kai, F., Nakashima, T., Tuchagues, J.-P. & Matsumoto, N. (1999). Inorg. Chem. 38, 3513–3522.