Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Han-Na Hou

Department of Chemistry, Hubei Institute of Education, Wuhan 430205, People's Republic of China

Correspondence e-mail: houhanna@163.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.032$
$w R$ factor $=0.083$
Data-to-parameter ratio $=21.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Dichloro\{4-chloro-2-[2-(isopropylamino)ethyliminomethyl]phenolato\}copper(II)

In the title mononuclear copper(II) complex, $\left[\mathrm{CuCl}_{2}\right.$ $\left(\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}\right)$], the $\mathrm{Cu}^{\text {II }}$ atom is coordinated by one O atom and one imine N atom of a Schiff base ligand, and by two Cl^{-} anions, forming a slightly distorted tetrahedral geometry. In the crystal structure, molecules are linked through intermolecular hydrogen bonds, forming layers parallel to the $b c$ plane.

Comment

Copper(II) complexes derived from Schiff base ligands have been studied extensively due to their interesting structures and wide applications (Bhaduri et al., 2003; Rospendowski \& Smith, 1988; Dominguez-Vera et al., 1998; Hebbachi \& BenaliCherif, 2005; Butcher et al., 2003). The present author has recently reported a related copper(II) complex (Hou, 2006) and, in a further investigation of such complexes, the structure of the title mononuclear copper(II) complex, (I), is reported here.

(I)

The $\mathrm{Cu}^{\mathrm{II}}$ atom in (I) is in a slightly disorted tetrahedral geometry and is four-coordinated by one O atom and one imine N atom of a Schiff base ligand, and by two Cl^{-}anions (Fig. 1). The bond lengths (Table 1) involving the $\mathrm{Cu}^{\mathrm{II}}$ atom are within normal ranges and comparable with the values observed in other similar copper(II) complexes (Shii et al., 1999; Pal et al., 2005; Colacio et al., 1998).

In the crystal structure of (I), the molecules are linked through $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ intermolecular hydrogen bonds (Table 2), forming layers parallel to the $b c$ plane (Fig. 2).

Experimental

5-Chlorosalicylaldehyde ($0.5 \mathrm{mmol}, 78.3 \mathrm{mg}$), N-isopropylethane-1,2diamine ($0.5 \mathrm{mmol}, 51.9 \mathrm{mg}$), and $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{mmol}, 85.2 \mathrm{mg})$ were dissolved in methanol (50 ml). The mixture was stirred at 328 K for 1 h to give a dark-blue solution. After keeping the solution in air for 11 d , blue block-shaped crystals of (I) were formed.

Figure 1
The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

$\left[\mathrm{CuCl}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}\right)\right]$	$Z=4$
$M_{r}=375.17$	$D_{x}=1.556 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, $P 2_{1} / c$	Mo $K \alpha$ radiation
$a=11.887(1) \AA$	$\mu=1.86 \mathrm{~mm}^{-1}$
$b=11.557(1) \AA$	$T=298(2) \mathrm{K}$
$c=12.531(1) \AA$	Block, blue
$\beta=111.521(1)^{\circ}$	$0.22 \times 0.18 \times 0.13 \mathrm{~mm}$
$V=1601.5(2) \AA^{3}$	

Data collection
Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.686, T_{\text {max }}=0.794$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.083$
$S=1.05$
3800 reflections
174 parameters
H-atom parameters constrained
Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{O} 1$	$1.944(2)$	$\mathrm{Cu} 1-\mathrm{Cl} 2$	$2.220(1)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$1.996(2)$	$\mathrm{Cu} 1-\mathrm{Cl} 3$	$2.246(1)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$	$97.62(6)$	$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{Cl} 3$	$109.85(5)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{Cl} 2$	$108.51(5)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{Cl} 3$	$111.40(5)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{Cl} 2$	$110.10(5)$	$\mathrm{Cl} 2-\mathrm{Cu} 1-\mathrm{Cl} 3$	$117.50(3)$

Table 2
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1^{\mathrm{i}}$	0.90	1.98	$2.828(2)$	157
$\mathrm{~N} 2-\mathrm{H} 2 B \cdots \mathrm{Cl2}$				
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{Cl}^{\mathrm{i}}$	0.90	2.47	$3.2532(19)$	145
$\mathrm{C} 9-\mathrm{H} 9 A \cdots \mathrm{Cl3}^{\mathrm{ii}}$	0.93	2.77	$3.619(2)$	153

[^1]

Figure 2
The crystal packing of (I), viewed along the b axis. Hydrogen bonds are indicated as dashed lines. Only H atoms involved in the hydrogen bonds have been included.

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA$ and $\mathrm{N}-\mathrm{H}=0.90 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2$ or $1.5 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The author acknowledges Hubei Institute of Education for funding this work.

References

Bhaduri, S., Tasiopoulos, A. J., Bolcar, M. A., Abbound, K. A., Streib, W. E. \& Christou, G. (2003). Inorg. Chem. 42, 1483-1492.
Bruker (1998). SMART (Version 5.628) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
Butcher, R. J., Mockler, G. M. \& McKern, O. (2003). Acta Cryst. E59, m1104m1106.
Colacio, E., Dominguez-Vera, J. M., Ghazi, M., Kivekäs, R., Klinga, M. \& Moreno, J. M. (1998). Inorg. Chem. 37, 3040-3045.
Dominguez-Vera, J. M., Camara, F., Moreno, J. M., Colacio, E. \& StoeckliEvans, H. (1998). Inorg. Chem. 37, 3046-3050.
Hebbachi, R. \& Benali-Cherif, N. (2005). Acta Cryst. E61, m1188-m1190. Hou, H.-N. (2006). Acta Cryst. E62, m1533-m1534.
Pal, S., Barik, A. K., Gupta, S., Hazra, A., Kar, S. K., Peng, S.-M., Lee, G.-H., Butcher, R. J., El Fallah, M. S. \& Ribas, J. (2005). Inorg. Chem. 44, 38803889.

Rospendowski, B. \& Smith, W. E. (1988). Inorg. Chem. 27, 4509-4511.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Shii, Y., Motoda, Y., Matsuo, T., Kai, F., Nakashima, T., Tuchagues, J.-P. \& Matsumoto, N. (1999). Inorg. Chem. 38, 3513-3522.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

[^1]: Symmetry codes: (i) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$; (ii) $x,-y+\frac{3}{2}, z-\frac{1}{2}$.

